SHORT PAPER

Low-temperature isospecific polymerization of propylene catalyzed by alkylzirconocene-type 'cations'

Woei-Min Tsai, Marvin D Rausch* and James C W Chien*
Department of Polymer Science and Engineering and *Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA

The rac-ethylenebis(indenyl)methylzirconium 'cation' (1), generated from rac-Et(Ind)₂ZrMe₂ and Ph₃CB(C₆F₅)₄, has recently been shown to be exceedingly active and stereoselective in propylene polymerization. The ethyl analog (2) can be produced by an alternate, efficient route involving a reaction between rac-Et(Ind)₂ZrCl₂ and AlEt₃ (TEA), followed by addition of Ph₃CB(C₆F₅)₄. The use of excess AlEt₃ serves both to alkylate the zirconium complex as well as to scavenge the system. The propylene polymerization activity of the 'cation' 2 is about 7000 times greater than the activity of rac-Et(Ind)₂ZrCl₂/methylaluminoxane (MAO) at $T_p = -20$ °C. The related catalyst system rac-Me₂Si(Ind)₂ZrCl₂/TEA/Ph₃CB(C₆F₅)₄ (3) was found to produce 98.3% i-PP with T_m 156.3 °C and an activity of 1.8×10^9 g PP {(mol Zr) [C₃H₆] h}⁻¹. Keywords: Polypropylene, polymerization, iso-

Keywords: Polypropylene, polymerization, isospecificity, alkylzirconocene-type cations, stereoselectivity, MAO, cationic catalysts, trityl tetrakis(pentafluorophenyl)borate.

INTRODUCTION

The bis-(cyclopentadienyl)titanium dichloride (Cp₂TiCl₂; Cp = η^5 -cyclopentadienyl)/alkylaluminum chlorides system was the first homogeneous ethylene polymerization catalyst. The catalyst exhibited low polymerization activity ($A = 5 \times 10^4$ g PE (mol Ti atm h)⁻¹ at 15 °C) for ethylene² and none for propylene. Recently, many 'cationic' metallocene alkyls, usually with BPh₄ as the counterion, have been reported. They were found to exhibit modest ethylene polymerization activity. They showed either no activity for propylene polymerization or they gave low yields of atactic products. This is probably due to a freely rotating Cp ligand and lack of an

asymmetric center. When the metallocene complex was activated with methylaluminoxane¹²⁻¹⁷ (MAO), very high ethylene polymerization activity of 10⁸ g PE (mol Zr atm h)⁻¹ was achieved. Still, the catalytic site does not impose stereochemical control on the polymerization of prochiral monomers.

Stereoselective polymerizations of α -olefins were possible with chiral metallocene complexes. For instance, the rac-Et(Ind)₂ZrCl₂/MAO or analogous tetrahydroindenyl catalyst systems can produce isotactic polypropylene of varying degrees of stereoregularity, depending upon the temperature of polymerization. 16, 17 The stereoregularity was improved markedly by lowering the temperature of polymerization (T_p) . However since the activation energy for the log (polymerization activity) vs T^{-1} is 12.4 kcal mol⁻¹ (52.08 kJ mol⁻¹) the zirconocene/MAO is virtually without catalytic activity for $T_p \le -20$ °C.¹⁷ This may be explained by the complexation of the catalytic sites with MAO, resulting in appreciably reduced catalytic activity.

The low polymerization activities found previously for zirconocene cationic species^{3-7,9-11} may be explained by complexation with strongly coordinating solvent molecules and also the electrophilic attack on the anion by the alkylzirconocenium species. These considerations have caused investigators to gravitate from BF₄, PF_6^- , and $B(C_6H_5)_4^-$ anions to $B(C_6F_5)_4^-$ and carcounterions. borane We have reported previously¹⁸ that the rac-ethylenebis(indenyl)methylzirconium cation (1), which was produced from the reaction of racethylenebis(indenyl)dimethylzirconium (4) and triphenylcarbenium (trityl) tetrakis(pentafluorophenyl)borate (5), is exceedingly active and stereoselective in propylene polymerization, and that its catalytic activity and stereospecificity increase with a decrease of $T_{\rm p}$. Ewen et al. 19 have

Run no.	Catalyst ^a		Cocatalyst ^a							
	Compd	[Zr] (μм)	Compd	[Al] (mм)	Compd	[B] (μм)	$A^{\rm b} \times 10^{-6}$	ΙΥ ^c (%)	<i>T</i> _m (°C)	$M_{\rm w} \times 10^{-3}$ d
1	6	125	MAO	312		_	1.4	59.6	134.8	24
2	4	75	_		5	75	8.5	36.9	128.8	24
3	6	10	TEA	0.50	5	10	90	36.9	128.3	24
4	7	100	MAO	250	_		1.4	58.0	145.6	56
5	7	10	TEA	0.50	5	10	66	52.2	143.5	60

Table 1 Propylene polymerization at $T_p = 20$ °C

^a6, Et(Ind)₂ZrCl₂; 4, Et(Ind)₂ZrMe₂; 7, Me₂Si(Ind)₂ZrCl₂; 5, Ph₃CB(C₆F₅)₄. ^bA measured in g PP {(mol Zr) [C₃H₆] h}⁻¹. ^c Weight percentage of PP insoluble in refluxing heptane. ^dlog $M_w = 1.25 \times (\log [\eta] + 4)$ (Ref. 25).

employed N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate to achieve the same objective.

While the catalyst system 4/5 is highly active, it must be employed in relatively high concentrations in propylene polymerizations in order to scavenge impurities. In this contribution, we report an alternate and efficient method to produce alkylzirconocene-type 'cation' polymerization catalysts.

EXPERIMENTAL

All operations were performed using Schlenk tube techniques under an argon atmosphere. rac-Et(Ind)₂ZrCl₂^{20,21} (6), rac-Me₂Si(Ind)₂ZrCl₂²² (7), Ph₃CB(C₆F₅)₄¹⁸ (5) and MAO²³ were prepared according to published procedures. Toluene was dried over refluxing sodium; the propylene (polymer purity grade) purchased from Matheson was passed through two Matheson Gas Purifiers (Model 6406) and used directly. A detailed comparison was made of propylene polymerization catalyzed by alkylzirconocene-type

'cations' and by the zirconocene/MAO system for $T_{\rm p}$ ranging from -55 °C to 20 °C. The polymerizations were carried out as follows. A 250 cm³ crown-capped glass pressure bottle containing a magnetic stir bar was evacuated, back-flushed with argon several times; then 50 cm³ of toluene was injected. The argon was replaced with 1.6 bar of propylene, and TEA and the zirconocene complex were added. The mixture was stirred for 5 min at room temperature, the system was cooled to the desired polymerization temperature, and after monomer saturation was achieved, the $Ph_3CB(C_6F_5)_4$ (5) dissolved in toluene was added via a syringe to start the polymerization. polymerization, the unreacted monomer was vented and the mixture was quenched with acidic methanol (1% HCl). The polymer was filtered, washed with methanol and finally dried at 70 °C to constant weight.

Melting and crystallization curves were recorded on a Perkin-Elmer DSC IV system. The molecular weight was determined by intrinsic viscosity measurements. The values of A were calculated using the measured solubility of propylene¹⁶ {in g PP (mol Zr $[C_3H_6] h)^{-1}$ } except $T_p = -55$ °C [in g PP (mol Zr h)⁻¹].

Table 2 Propylene polymerization at $T_p = 0$ °C

Run no.	Catalyst		Cocatalyst							
	Compd	[Zr] (μм)	Compd	[Al] (mм)	Compd	[B] (μм)	$A \times 10^{-6}$	IY (%)	<i>T</i> _m (°C)	$M_{\rm w} \times 10^{-3}$
1	6	125	MAO	312		_	0.09	74.4	141.5	59
2	4	75			5	75	6.7	88.4	142.4	59
3	6	10	TEA	0.75	5	10	88	88.4	146.8	60
4	7	100	MAO	250	_	_	0.32	81.5	150.0	76
5	7	5	TEA	0.75	5	5	120	90.1	150.6	87

Run no.	Catalyst		Cocatalyst							
	Compd	[Zr] (μм)	Compd	[A1] (mм)	Compd	[B] (μм)	$A \times 10^{-6}$	IY (%)	T _m (°C)	$M_{\rm w} \times 10^{-3}$
1	6	125	MAO	312			0.033	75.0	146,8	70
2	4	100			5	100	21	93.6	152.9	110
3	6	5	TEA	1.00	5	5	230	93.6	156.1	110
4	7	100	MAO	250		_	0.015	83.8	152.5	110
5	7	2.5	TEA	1.00	5	2.5	1800	98.3	156.3	170

Table 3 Propylene polymerization at $T_p = -20$ °C

RESULTS AND DISCUSSION

We had previously¹⁸ shown that the reaction of rac-Et(Ind)₂ZrMe₂ and trityl tetrakis(penta-fluorophenyl)borate (5) produced rac-ethylenebis(indenyl)methylzirconium [rac-Et(Ind)₂ZrMe] 'cation' (1) which is exceedingly active for propylene polymerization.

It has been proposed that reaction of Cp₂ZrCl₂ with TEA (triethylaluminum) produces a series of zirconocene complexes including alkylated Cp₂ZrEt₂.²⁴ In a similar manner, treatment of rac-Et(Ind)₂ZrCl₂ and AlR₃ (R = Et, i-Bu) can generate the intermediate Et(Ind)₂ZrR₂, which on subsequent reaction with 5 can produce the 'cation' [Et(Ind)₂ZrR]⁺ (2), which exhibits activity much higher than 1 in propylene polyidentical merization with almost stereosystem specificity. Like the catalyst 1. rac-Et(Ind)₂ZrCl₂/TEA/Ph₃CB(C₆F₅)₄ (8) has an A which is also greater at lower temperature. At $T_{\rm p} \le -20 \,{\rm ^{\circ}C}$ the polymerization was agitationlimited after just a few minutes; it is about 7000 times greater than the activity of the 6/MAO (9) system (compare runs 1 and 3, Table 3). This behavior is in contrast to Ziegler-Natta catalysis involving MAO as cocatalyst (Tables 1–4, runs 1 and 4) in which A decreases sharply with a decrease in $T_{\rm p}$. The catalyst 8 is also about 10 times more active than 1 (compare runs 2 and 3, Tables 1–4). The stereospecificity as judged by IY (the percentage yield of refluxing n-heptaneinsoluble i-PP), $T_{\rm m}$ (melting temperature) and $M_{\rm w}$ of the polypropylene produced by the cationic systems (1 or 8) is generally higher than for the PP produced at 20 °C (Table 1) and became greater at lower polymerization temperatures. At –55 °C, 8 produced 95.9% i-PP with $T_{\rm m}$ 159.2 °C, whereas the polypropylene produced by 9 (6/MAO) has IY only 86.2% and $T_{\rm m}$ 152.0 °C.

The rac-Me₂Si(Ind)₂ZrCl₂/MAO (10) system was found to produce polypropylene of higher stereoregularity and molecular weight than did 9. This polymerization behavior was even more significant for the Me₂Si(Ind)₂ZrCl₂/TEA/Ph₃CB (C₆F₅)₄ (11) system. At $T_p = -20$ °C, highly stereospecific (IY = 98·3%, $T_m = 156.3$ °C) and high-molecular-weight ($M_w = 170000$) polypropylene was produced with $A = 1.8 \times 10^9$ g PP (mol Zr [C₃H₆] h)⁻¹. This result is about 120 000 times greater than the activity of 10 (compare runs 4 and 5, Table 3).

Table 4 Propylene polymerization at $T_p = -55$ °C

Run no.	Catalyst		Cocatalyst							
	Compd	[Zr] (μm)	Compd	[A1] (mм)	Compd	[B] (μм)	$A \times 10^{-6a}$	IY (%)	<i>T</i> _m (°C)	$M_{\rm w} \times 10^{-3}$
1	6	125	MAO	312		_	0.002	86.2	152.0	
2	4	100		_	5	100	14	96.3	161.1	160
3	6	5	TEA	1.00	5	5	160	95.9	159.2	150
4	7	100	MAO	250		_				
5	7	2.5	TEA	1.00	5	2.5	270	99.4	159.9	220

^a A (measured in g PP [(mol Zr) h]⁻¹.

CONCLUSION

The reaction of metallocene dichlorides, TEA and $Ph_3CB(C_6F_5)_4$ to produce alkylzirconocenetype 'cations' is facile. These cations are very reactive and unstable in the absence of monomer. In the presence of monomer, however, polymerization occurs at an extremely rapid rate which is faster at lower T_p . The resulting polypropylene produced at low T_p is highly isotactic.

REFERENCES

- Breslow, D S and Newburg, N R J. Am. Chem. Soc., 1957, 79: 5072
- 2. Chien, J C W J. Am. Chem. Soc., 1959, 81: 86
- Jordan, R F, Bajgur, C S, Willett, R and Scott, B J Am. Chem. Soc., 1986, 108: 7410
- 4. Taube, R and Krukowka, L J. Organomet. Chem., 1988, 347: C9
- Hlaky, G G, Turner, H W and Eckman, R R J. Am. Chem. Soc., 1989, 111: 2728
- Jordan, R F, Dasher, W E and Echols, S F J. Am. Chem. Soc., 1986, 108: 1718
- 7. Jordan, R F, La Pointe, R E, Bajgur, C S, Echols, S F and Willett, R J. Am. Chem. Soc., 1987, 109: 4111
- 8. Jordan, R F, La Pointe, R E, Baenziger, N C and Hinch, G D Organometallics, 1990, 9: 1539

- Bochmann, M, Jaggar, A J and Nicholls, J C Angew. Chem., Int. Ed. Engl., 1990, 29: 780
- Horton, A D and Frijns, J H G Angew. Chem., Int. Ed. Engl., 1991, 30: 1152
- Yang, X, Stern, C L and Marks, T J J. Am. Chem. Soc., 1991, 113: 3623
- Sinn, H, Kaminsky, W, Vollmer, H J and Woldt, R Angew. Chem., Int. Ed. Engl., 1980, 19: 390
- 13. Ewen, J A J. Am. Chem. Soc., 1984, 106: 6355
- Kaminsky, W, Kulper, K, Brintzinger, H H and Wild, F R W P Angew. Chem., Int. Ed. Engl., 1985, 24: 507
- 15. Rieger, B and Chien, J C W Polym. Bull., 1989, 21: 159
- Rieger, G, Mu, X, Mallin, DT, Rausch, MD and Chien, JCW Macromolecules, 1990, 23: 3559
- Chien, J C W and Sugimoto, R J. Polym. Sci., Part A, 1991, 29: 459
- Chien, J C W, Tsai, W-M and Rausch, M D J. Am. Chem. Soc., 1991, 113: 8570
- Ewen, J A, Elder, M J, Jones, R C, Haspeslagh, L, Atwood, J L, Bolt, S G and Robinson, K Makromol Chem., Macrochem. Symp., 1991, 48/49: 253
- Wild, F R W P, Wasiucionek, M, Huttner, G and Brintzinger, H H J. Organomet. Chem., 1985, 288: 63
- Collins, S, Kuntz, B A, Taylor, N J and Ward, D G J. Organomet. Chem., 1988, 342: 21
- Herrmann, W A, Rohrmann, J, Herdtweck, E, Spaleck, W and Winter, A Angew. Chem. Int. Ed. Engl., 1989, 28: 1511
- Chien, J C W and Wang, B P J. Polym. Sci., Part A, 1988,
 3089
- 24. Karainsky, W and Sinn, H Liebigs Ann. Chem., 1975, 424
- 25. Chiang, R J. Polym. Sci., 1956, 28: 235